Ruh, A.; Spiegel, M.: Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCl-ZnCl2 micture. Corr.Sci. 48, pp. 679 - 695 (2006)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion of pure iron. Mater. and Corr. 57, pp. 237 - 243 (2006)
Ruh, A.; Spiegel, M.: Kinetic investigations on salt melt induced high temperature corrosion of pure metals. Materials Science Forum 461-464, pp. 61 - 68 (2004)
Ruh, A.; Spiegel, M.: Salt melt induced etching phenomena on metal surfaces. Eurocorr 2005, Lisbon, Portugal, September 04, 2005 - September 08, 2005., (2005)
Ruh, A.; Spiegel, M.: Influence of HCl and water vapour on the corrosion kinetics of Fe beneath molten ZnCl2/KCl. In: Proceedings of EUROCORR 04, 1. Proceedings of EUROCORR 04, Nice, France, 2004. (2004)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Ruh, A.; Spiegel, M.: Kinetic investigations on salt melt induced high temperature corrosion of pure metals. 6th Int. Symposium on High Temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…