Krüger, T.; Varnik, F.; Raabe, D.: Simulation of a dense suspension of deformable particles using the lattice Boltzmann method. ICMMES 2009, Guangzhou, China (2009)
Varnik, F.: Lattice Boltzmann studies of confined flows at intermediate Reynolds numbers: The role of wall roughness. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Stability and kinetics of droplets: A free energy based lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Gross, M.; Varnik, F.; Raabe, D.: Stability and kinetic of droplets: A free energy based lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad Honnef, Germany (2008)
Varnik, F.: Yield stress discontinuity: A manifest of the glass transition in a sheared glass. 369th Heraeus-Seminar, Interplay of Thermodynamics and Hydrodynamics in Soft Condensed Matter, Bad-Honnef, Germany (2006)
Varnik, F.: Shearing glassy model systems: A test of theoretical predictions on non linear rheology. 6th Liquid Matter Conference, Utrecht, The Nederlands (2005)
Varnik, F.: Confinement effects on the slow dynamics of a simulated supercooled polymer melt. International workshop on dynamics in viscous liquids, München, Germany (2004)
Varnik, F.: Glass Transition in Polymer Films: A Molecular Dynamics Study. International Conference on Computational Physics (CCP), Aachen, Germany (2001)
Varnik, F.: Propriétés statiques et dynamiques des couches minces de polymères. Les Journées de Rencontre Nationale sur les propriétés des verres, Montpellier, France (2001)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…