Calcagnotto, M.; Ponge, D.; Adachi, Y.; Raabe, D.: Effect of grain refinement to 1 µm on deformation and fracture mechanisms in ferrite/martensite dual-phase steels. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2010)
Dmitrieva, O.; Choi, P.; Ponge, D.; Raabe, D.; Gerstl, S. S. A.: Laser-pulsed atom probe studies of a complex maraging steel: Laser pulse energy variation and precipitate analysis. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Ponge, D.; Raabe, D.: Nano-particles and filaments in steels: From understanding to materials design. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Herrera, C.; Ponge, D.; Raabe, D.: Development of a high ductile lean duplex stainless steel. 2nd International Conference on Super-High Strength Steels SHSS, Peschiera del Garda, Italy (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Effect of grain refinement to 1µm on the mechanical properties of dual-phase steels. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2009), Glasgow, UK (2009)
Herrera, C.; Ponge, D.; Raabe, D.: Hot workability of 1.4362 duplex stainless steel. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, Scotland, UK (2009)
Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D.; Zaefferer, S.: 3D-EBSD Investigation on Orientation Gradients and Geometrically Necessary Dislocations Induced by the Martensitic Phase Transformation in Ultrafine Grained Dual-Phase Steels. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Mechanical properties of ultrafine and fine grained dual phase steels. MS&T 2008 (Materials Science and Technology), Pittsburgh, PA, USA (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.