Swaminathan, S.; Spiegel, M.; Rohwerder, M.: Effect of annealing conditions on the selective oxidation of quarternary model alloy. 4th International Conference on Diffusion in Solids and Liquids, Barcelona, Spain (2008)
Swaminathan, S.; Koll, T.; Pohl, M.; Spiegel, M.: Hot-dip galvanizing simulation of model alloys and industrial steel grades: Correlation between surface chemistry and wettability. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Swaminathan, S.; Spiegel, M.: Effect of alloy composition on the selective oxidation of ternary Fe–Si–Cr, Fe–Mn–Cr model alloys. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Auinger, M.; Swaminathan, S.; Rohwerder, M.: The Influence of Oxide Formation on the Diffusion Properties in Iron Alloys - The Thermogravimetric Behaviour in Early Stages of Oxidation. Gordon-Kenan Research Seminar on High Temperature Corrosion and Gordon-Research Conference on High Temperature Corrosion, New London, NH, USA (2011)
Vogel, D.; Swaminathan, S.; Rohwerder, M.; Renner, F. U.: Possibilities for high-temperature corrosion at MPIE. International Symposium on High-temperature Oxidation and Corrosion, Zushi, Japan (2010)
Vogel, A.; Swaminathan, S.; Vogel, D.; Rohwerder, M.: Novel Setup for Metal/Gas Reactions at High Temperature. 6th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties, Paris, France (2010)
Swaminathan, S.: Selective surface oxidation and segregation upon short term annealing of model alloys and industrial steel grades. Dissertation, Ruhr-Universität, Fakultät für Physik und Astronomie, Bochum, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…