Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Spontaneous fluctuations in a plasma ion assisted deposition – correlation between deposition conditions and vanadium oxide thin film growth. Thin Solid Films 722, 138574 (2021)
Frank, A.; Wochnik, A. S.; Bein, T.; Scheu, C.: A biomolecule-assisted, cost-efficient route for growing tunable CuInS2 films for green energy application. RSC Advances 7 (33), pp. 20219 - 20230 (2017)
Hettstedt, C.; Frank, A.; Karaghiosoff, K.: Synthesis of two p-methoxyphenyl substituted phosphines. Phosphorus, Sulfur, and Silicon and the Related Elements 191 (10), pp. 1297 - 1301 (2016)
Frank, A.; Changizi, R.; Scheu, C.: Preparative and analytical challenges in electron microscopic investigation of nanostructured CuInS2 thin films for energy applications. Microscience Microscopy Congress (MMC) 2019, Manchester, UK (2019)
Gänsler, T.; Frank, A.; Betzler, S. B.; Scheu, C.: Electron microscopy studies of Nb3O7(OH) nanostructured cubes - insights in the growth mechanism. Microscience Microscopy Congress MMC2019, Manchester, UK (2019)
Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Electron microscopic investigation of the influence of plasma parameters on VOx films deposited by a plasma ion assisted process. E-MRS 2019 Spring Meeting, Nice, France (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…