Ankah, G. N.; Meimandi, S.; Renner, F. U.: Dealloying of Cu3Pd Single Crystal Surfaces. Journal of the Electrochemical Society 160 (8), pp. C390 - C395 (2013)
Valtiner, M.; Ankah, G. N.; Bashir, A.; Renner, F. U.: Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design. Review of Scientific Instruments 82 (2), pp. 023703-1 - 023703-8 (2011)
Renner, F. U.; Ankah, G.; Pareek, A.: Surface Morphology Changes during Dealloying. Pacific Rim Meetin on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Ankah, G. N.; Renner, F. U.; Rohwerder, M.: Fundamental Investigations of the Corrosion of Binary Alloys. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Ankah, G. N.: Investigations of the Selective Dissolution of Cu3Au(111): In-situ and Ex-situ Characterization. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…