Auinger, M.: High Temperature Corrosion in Low Activity Gases - Theoretical Calculations and Experimental Comparison of Oxide, Nitride and Carbide Formation. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Auinger, M.: Phase Diagrams with FACTSage - Speaking different Languages for Thermochemical Properties. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2013)
Auinger, M.: Internal oxidation and nitridation of hot rolled steels - A theoretical study and its experimental verification. Gunnar Eriksson Symposium & GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Germany (2012)
Auinger, M.: What do we know about internal oxidation in hot-rolled steels? - A theoretical study and its experimental verification. Seminar Talk at Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universtät Bochum, Bochum, Germany (2012)
Auinger, M.: Experimental studies and theoretical calculations on the formation of nitrides and oxides during selective oxidation in binary iron-alloys. 8th International Symposium on High-Temperature Corrosion and Protection of Materials, Les Embiez, France (2012)
Auinger, M.: Applied Simulations of Thermodynamic Reactions and Interphase Diffusion (ASTRID): Vorstellung des Konzepts und Beispiele zur Korngrenzenoxidation. CDL-Workshop Strukturmodellierung in technischen Metallen, Rust, Austria (2012)
Auinger, M.: Theory and Experiment for High Temperature Metal-Gas Reactions. Seminar Talk at Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA (2011)
Auinger, M.; Rohwerder, M.: Connecting Thermochemical Reactions and Diffusion - The Formation of Grain Boundary Oxides in Steel Sheets. 18th Conference on Computer Methods in Materials Technology, Zakopane, Poland (2011)
Evers, S.; Borodin, S.; Auinger, M.; Rohwerder, M.: Understanding of Hydrogen in Steel by Scanning Kelvin Probe measurements on evaporated Pd-Films. 7th International Conference on Diffusion in Solids and Liquids (DSL 2011), Algarve, Portugal (2011)
Auinger, M.: Coupling Thermodynamics and Diffusion for describing Metal/Gas Reactions at elevated Temperatures. Lecture at Institute for Materials Research, Tohoku University, Sendai, Japan (2010)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. Division of Materials and Manufacturing Science, Osaka University, Osaka, Japan (2010)
Auinger, M.; Borodin, S.; Evers, S.; Rohwerder, M.: Thermodynamic Studies of Hydrogen Permeation and the Effect of Oxide Formation in Pure Iron Samples. 6th International Conference on Diffusion in Solids and Liquids, Paris, France (2010)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Simulations of the Oxidation Processes in Polycrystalline Metallic Alloys. International Workshop “Grain boundary diffusion, stresses and segregation”, Moscow, Russia (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Stability and Reaction Sequence for High Temperature Oxidation Processes in Steels. International Symposium “High Temperature Oxidation and Corrosion”, Zushi (Tokyo), Japan (2010)
Auinger, M.; Vogel, A.; Rohwerder, M.: High Temperature Corrosion in low-activity gases - Theoretical Calculations and Experimental Comparison of Oxide, Nitride and Carbide Formation. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…