Knezevic, V.; Sauthoff, G.: Strengthening of Martensitic/Ferritic 12%Cr Model Steels Through Laves Phase Precipitation. Euromat 2003, 8th European Congress on Advanced Materials and Processes, München, Germany (2003)
Risanti, D. D.; Sauthoff, G.: Strengthening of Hot Corrosion-Resistant Fe-Al alloys Through Laves Phase Precipitation. Euromat 2003, 8th European Congress on Advanced Materials and Processes, München, Germany (2003)
Stallybrass, C.; Sauthoff, G.: Ferritic Fe–Al–Ni–Cr alloys for high temperature applications. Thirteenth International Conference on the Strength of Materials (ICSMA XIII), Budapest, Hungary (2003)
Schneider, A.; Falat, L.; Sauthoff, G.; Frommeyer, G.: Microstructures and Mechanical Properties of Fe–Al–C and Fe–Al–M–C (M = Ti, V, Nb, Ta) Alloys. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Stein, F.; Palm, M.; Sauthoff, G.: Structures and Stability of Laves Phases. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Schneider, A.; Frommeyer, G.; Sauthoff, G.: Intermetallics for High-Temperature Applications - Needs and Prospects. Intern. Symp. Progress of Metal Science, Tokyo (2002)
Stein, F.; Sauthoff, G.; Palm, M.: Intermetallic Phases and Phase Equilibria in the Fe–Zr and Fe–Zr–Al Systems. Discussion Meeting on Thermodynamics of Alloys (TOFA 2002), Rome, Italy (2002)
Palm, M.; Sauthoff, G.: Characterization and Processing of an Advanced Intermetallic NiAl-Base Intermetallic Alloy for High-Temperature Applications. Structural Intermetallics 2001 (ISSI-3), Jackson Hole, Wyoming (2002)
Stein, F.; Zhang, L.; Palm, M.; Sauthoff, G.: Al-Ti Alloys with Al-Rich Titanium Aluminides: Phase Equilibria, Evolution of Phases and Strength of Lamellar TiAl+r-Al2Ti Alloys. Structural Intermetallics 2001 (ISSI-3), Jackson Hole, Wyoming, USA (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.