Stein, F.: Experimental Determination of Phase Diagrams. Lecture: Lecture at the 3rd MSIT Winter School on Materials Chemistry, Castle Ringberg, Tegernsee, March 04, 2019 - March 07, 2019
Stein, F.: Experimental Determination of Phase Diagrams. Lecture: 6th APDIC World Round Robin Seminar, 2nd MSIT Winter School on Materials Chemistry, Schloss Ringberg, Tegernsee, Germany, February 11, 2018 - February 14, 2018
Stein, F.: Phase Diagrams – Why You Need Them, How You Can Use Them, and How You Can Generate Them. Lecture: MPIE lecture series, Düsseldorf, Germany, February 06, 2017
Palm, M.; Stein, F.; Pyczak, F.: Co-organization and co-chair the priority topic “Hochtemperaturwerkstoffe“ (high temperature materials) at the 62. Metallkunde Kolloquium. (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
A wide range of steels is nowadays used in Additive Manufacturing (AM). The different matrix microstructure components and phases such as austenite, ferrite, and martensite as well as the various precipitation phases such as intermetallic precipitates and carbides generally equip steels with a huge variability in microstructure and properties.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…