El-Zoka, A.; Kim, S.-H.; Khanchandani, H.; Stephenson, L.; Gault, B.: Advances in Cryo-Atom Probe Tomography Studies on Formation of Nanoporous Metals by Dealloying (Digital Presentation). In ECS Meeting Abstracts, MA2022-01 (47), p. 1983. The Electrochemical Society (2022)
El-Zoka, A.: Materials Degradation: Turning a problem into a solution. Colloquium on Integrated Metallic Nanomaterials Systems, Hamburg, Germany (2021)
El-Zoka, A.: Towards Enhanced Atom Probe Tomography Characterization of Wet Corrosion Systems. (SCI Electrochemistry Postgraduate Conference, Manchester, UK (2021)
Kim, S.-H.; Yoo, Su, S.-H.; Aota, L. S.; El-Zoka, A.; Kang, P. W.; Lee, Y.; Gault, B.: B dopant evolution in Pd catalysts after H evolution/oxidation reaction in alkaline environment. arXiv (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…