Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Šlapáková, M.; Liebscher, C.; Kumar, S.; Stein, F.: Deformation Mechanism of Single Phase C14 Laves Phase NbFe2 Studied by TEM. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Stein, F.; Horiuchi, T.: Discontinuous Precipitation of the Complex Intermetallic Phase Nb2Co7 from Supersaturated Co Solid Solution. Thermec 2016, Graz, Austria (2016)
Stein, F.; Luo, W.; Li, X.; Palm, M.: Diffusion couples as a "new" method for material synthesis. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Li, X.; Scherf, A.; Heilmaier, M.; Stein, F.: Coarsening Kinetics of Lamellar FeAl + FeAl2 Microstructures in Al-rich Fe–Al Alloys. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Li, X.; Scherf, A.; Janda, D.; Heilmaier, M.; Stein, F.: Two-Phase Binary Fe–Al Alloys with Fine-Scaled Lamellar Microstructure and the Effect of Ternary Additions on Microstructure, Stability, and Mechanical Behavior. 123HiMAT-2015, Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering, Sapporo, Japan (2015)
Scherf, A.; Li, X.; Stein, F.; Heilmaier, M.: Creep Properties and Microstructure of Binary Fe–Al Alloys with a Fine-Scaled, Lamellar Microstructure. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Scherf, A.; Li, X.; Stein, F.; Heilmaier, M.: Creep Properties and Microstructure of Binary Fe-Al Alloys with a Fine-Scaled, Lamellar Microstructure. Creep 2015, 13th International Conference on Creep and Fracture of Engineering Materials and Structures, Toulouse, France (2015)
Stein, F.: Phase Diagrams and Phase Transformations. Intermetallics 2015 Conference, School on Thermodynamics of Intermetallics, Educational Center Kloster Banz, Staffelstein, Germany (2015)
Li, X.; Stein, F.; Scherf, A.; Janda, D.; Heilmaier, M.: Investigation of Fe–Al Based in situ Composites with Fine Lamellar Eutectoid Microstructure. MRS Fall Meeting 2014
, Boston, MA, USA (2014)
Stein, F.; He, C.: The Usefulness and Applicability of the Alkemade Theorem for the Determination of Ternary Phase Diagrams with Intermetallic Phases. TOFA 2014 – 14th Discussion Meeting on Thermodynamics of Alloys, Brno, Czech Republic (2014)
Stein, F.; Li, X.; Palm, M.; Scherf, A.; Janda, D.; Heilmaier, M.: Fe–Al Alloys with Fine-Scaled, Lamellar Microstructure: A New Candidate for Replacing Steels in High-Temperature Structural Applications? 60th Anniversary Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.