Grabowski, B.; Wippermann, S. M.; Glensk, A.; Hickel, T.; Neugebauer, J.: Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. DPG Spring Meeting 2015, Berlin, Germany (2015)
Nugraha, T. A.; Wippermann, S. M.: Understanding 3C-SiC/SiO2 interfaces in SiC-nanofiber based solar cells from ab initio theory. APS March Meeting 2015, San Antonio, TX, USA (2015)
Scalise, E.; Wippermann, S. M.; Galli, G.: Nanointerfaces in InAs-Sn2S6 nanocrystal-ligand networks: atomistic and electronic structure from first principles. APS March Meeting 2015, San Antonio, TX, USA (2015)
Scalise, E.; Wippermann, S. M.; Galli, G.: Nanointerfaces in InAs-Sn2S6 nanocrystal-ligand networks: atomistic and electronic structure from first principles. 79th Annual Meeting of the DPG and DPG Spring Meeting, Berlin, Germany (2015)
Wippermann, S. M.; Schmidt, W. G.; Oh, D. M.; Yeom, H. W.: Impurity-mediated early condensation of an atomic layer electronic crystal: oxygen-adsorbed In/Si(111)-(4×1)/(8×2). DPG Spring Meeting 2015, Berlin, Germany (2015)
Yang, L.; Tecklenburg, S.; Fang, N.; Erbe, A.; Wippermann, S. M.; Gygi, F.; Galli, G.: A joint first principles and ATR-IR study of the vibrational properties of interfacial water at Si(100):H-H2O solid-liquid interfaces. APS March Meeting 2015 , San Antonio, TX, USA (2015)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4×1)/(8×2): a fascinating model system for one-dimensional conductors. DPG March Meeting 2014, Berlin, Germany (2014)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4x1)/(8x2): A fascinating model system for one-dimensional conductors. DPG Spring Meeting, Dresden, Germany (2014)
Scalise, E.; Wippermann, S. M.; Galli, G.: Nanointerfaces in semiconducting nanocomposites: atomistic and electronic structure from first principles. PSI-K 2015 Conference , San Sebastian, Spain (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.