Roters, F.; Ma, A.: Ein nicht lokales Versetzungsdichte basiertes konstitutives Gesetz für Kristall-Plastizitäts-Finite-Elemente-Simulationen. Institutsseminar, Fraunhofer-Institut für Werkstoffmechanik IWM, Freiburg (2005)
Roters, F.; Ma, A.: Die Kristall-Plastizitäts-Finite-Elemente-Methode und ihre Anwendung auf Bikristall-Scherversuche. Institutsseminar, Institut für Werkstoffwissenschaften, Universität, Erlangen-Nürnberg (2005)
Roters, F.; Jeon-Haurand, H. S.; Raabe, D.: A texture evolution study using the Texture Component Crystal Plasticity FEM. Plasticity 2005, Kauai, USA (2005)
Raabe, D.; Roters, F.: How do 10^10 crystals co-deform. "Weitab vom Hooksechen Gesetz -- Moderne Ansätze und Ingenieurpraxis großer inelastischer deformation metallischer Werkstoffe'' Symposium der Akademie der Wissenschaften und der Literatur, Mainz, Germany (2004)
Raabe, D.; Roters, F.: Physically-Based Large-Scale Texture and Anisotropy Simulation for Automotive Sheet Forming. TMS Fall meeting, New Orleans, LA, USA (2004)
Roters, F.: Das Anwendungspotential der Kristallplastizitäts-Finite-Elemente-Methode aus Sicht der werkstoffphysikalischen Grundlagen. Werkstoffwoche 2004, München, Germany (2004)
Roters, F.; Ma, A.; Raabe, D.: The Texture Component Crystal Plasticity Finite Element Method. Keynote lecture at the Third GAMM (Society for Mathematics and Mechanics) Seminar on Microstructures, Stuttgart, Germany (2004)
Roters, F.: Numerische Simulation der Metallumformung und Rekristallisation. Workshop, Simulation und numerische Modellierung, Materials Valley e.V., Mainz (2003)
Wang, Y.; Roters, F.; Raabe, D.: Simulation of Texture and Anisotropy during Metal Forming with Respect to Scaling Aspects. 1st Colloquium Process Scaling, Bremen, Germany (2003)
Roters, F.: Crystal plasticity FEM from grain scale plasticity to anisotropic sheet forming behaviour. 13th international Workshop on Computational Modelling of the Mechanical Behaviour of Materials, Magdeburg, Germany (2003)
Raabe, D.; Helming, K.; Roters, F.; Zhao, Z.; Hirsch, J.: A Texture Component Crystal Plasticity Finite Element Method for Scalable Large Strain Anisotropy Simulations. ICOTOM 13, Seoul, South Korea (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…