Welsch, E. D.; Haghighat, S. M. H.; Gutiérrez-Urrutia, I.; Raabe, D.: Investigation of nano-sized kappa carbide distribution in advanced austenitic lightweight high-Mn steels by coupled TEM and DDD simulations: Strengthening and dislocation-based mechanisms. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Mesoscale modelling of the influence of loading conditions on the dislocation mobility and creep process in single crystal Ni base superalloys. KTH Stockholm-Sweden, Stockholm, Sweden (2014)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete Dislocation Dynamics Study of Creep Anisotropy in Single Crystal Ni Base Superalloys. MRS Fall Meeting, Bosten, USA (2013)
Haghighat, S. M. H.; Schäublin, R.; Raabe, D.: Molecular Dynamics Study of Obstacle Induced Hardening; From Nano-Sized Defects to Binary Junction. MRS Fall Meeting, Bosten, MA, USA (2013)
Haghighat, S. M. H.; Schäublin, R.; Raabe, D.: Atomistic study of forest hardening through binary dislocation junction in bcc-iron. 2013 MRS Spring Meeting, San Francisco, CA, USA (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete dislocation dynamics modeling of loading orientation effect on the low stress creep of single crystal Ni base superalloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Primary creep of Ni base supealloys used in hot gas turbine blades. Alstom Company, Baden, Switzerland (2012)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Dislocation dynamics modeling of the glide-climb mobility of a ½ a0<110>{111} dislocation in interaction with γ’ precipitate in Ni-based superalloy. 4th International Conference on Dislocations, Budapest, Hungary (2012)
Haghighat, S. M. H.; Schäublin, R.: Perspective of multiscale simulation approach in the development of novel materials. Tarbiat Modares University, Tehran, Iran (2012)
Haghighat, S. M. H.; Schäublin, R.: Atomistic simulation and transmission electron microscopy of obstacle strengthening in iron. Sahand University of Technology, Tabri, Iran (2012)
Haghighat, S. M. H.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Effect of local stress state on the glide of ½a₀<111> screw dislocation in bcc-Fe. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Schäublin, J.; Haghighat, S. M. H.: Simulation of the screw dislocation mobility in Fe by molecular dynamics. E-MRS Spring Meeting, Nice, France (2011)
Haghighat, S. M. H.; Schäublin, R.: Dislocations mechanisms in bcc-Fe; from atomistic to TEM observation. Workshop on ab initio Description of Iron and Steel: Mechanical properties, Ringberg Castle, Germany (2010)
Haghighat, S. M. H.; Reed, R. C.; Raabe, D.: Modeling of dislocation mechanisms and the influence of the γ/γ´lattice misfit on the dislocation assisted creep of high temperature Ni-base superalloys. 7th International Conference on Multiscale Materials Modeling , Berkeley, CA, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.