Zaefferer, S.; Kuo, J. C.; Zhao, Z.; Winning, M.; Raabe, D.: On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia 51, pp. 4719 - 4735 (2003)
Raabe, D.: Don’t trust your simulation - Computational materials science on its way to maturity? Advanced Engineering Materials 4 (5), pp. 255 - 267 (2002)
Raabe, D.; Zhao, Z.; Park, S. J.; Roters, F.: Theory of orientation gradients in plastically strained crystals. Acta Materialia 50 (2), pp. 421 - 440 (2002)
Park, S. J.; Han, H. N.; Oh, K. H.; Raabe, D.; Kim, J. K.: Finite element simulation of grain interaction and orientation fragmentation during plastic deformation of BCC metals. Proc. ICOTOM 13, pp. 371 - 376 (2002)
Raabe, D.: Cellular automata in materials science with particular reference to recrystallization simulation. Annual Review of Materials Research 32, pp. 53 - 76 (2002)
Raabe, D.; Roters, F.; Zhao, Z.: Texture component crystal plasticity finite element method for physically-based metal forming simulations including texture update. Proc. 8th Int. Conf. on Aluminium Alloys, pp. 31 - 36 (2002)
Raabe, D.; Zhao, Z.; Mao, W.: On the dependence of in-grain subdivision and deformation texture of aluminium on grain interaction. Acta Materialia 50, pp. 4379 - 4394 (2002)
Sachtleber, M.; Zhao, Z.; Raabe, D.: Experimental investigation of plastic grain interaction. Materials Science and Engineering A 336, pp. 81 - 87 (2002)
Juntunen, P.; Raabe, D.; Karjalainen, P.; Kopio, T.; Bolle, G.: Optimizing continuous annealing of IF steels for improving their deep drawability. Metallurgical and Materials Transactions A 32, pp. 1989 - 1995 (2001)
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…