Roters, F.; Ma, A.: Ein nicht lokales Versetzungsdichte basiertes konstitutives Gesetz für Kristall-Plastizitäts-Finite-Elemente-Simulationen. Institutsseminar, Fraunhofer-Institut für Werkstoffmechanik IWM, Freiburg (2005)
Roters, F.; Ma, A.: Die Kristall-Plastizitäts-Finite-Elemente-Methode und ihre Anwendung auf Bikristall-Scherversuche. Institutsseminar, Institut für Werkstoffwissenschaften, Universität, Erlangen-Nürnberg (2005)
Roters, F.; Jeon-Haurand, H. S.; Raabe, D.: A texture evolution study using the Texture Component Crystal Plasticity FEM. Plasticity 2005, Kauai, USA (2005)
Raabe, D.; Roters, F.: How do 10^10 crystals co-deform. "Weitab vom Hooksechen Gesetz -- Moderne Ansätze und Ingenieurpraxis großer inelastischer deformation metallischer Werkstoffe'' Symposium der Akademie der Wissenschaften und der Literatur, Mainz, Germany (2004)
Raabe, D.; Roters, F.: Physically-Based Large-Scale Texture and Anisotropy Simulation for Automotive Sheet Forming. TMS Fall meeting, New Orleans, LA, USA (2004)
Roters, F.: Das Anwendungspotential der Kristallplastizitäts-Finite-Elemente-Methode aus Sicht der werkstoffphysikalischen Grundlagen. Werkstoffwoche 2004, München, Germany (2004)
Roters, F.; Ma, A.; Raabe, D.: The Texture Component Crystal Plasticity Finite Element Method. Keynote lecture at the Third GAMM (Society for Mathematics and Mechanics) Seminar on Microstructures, Stuttgart, Germany (2004)
Roters, F.: Numerische Simulation der Metallumformung und Rekristallisation. Workshop, Simulation und numerische Modellierung, Materials Valley e.V., Mainz (2003)
Wang, Y.; Roters, F.; Raabe, D.: Simulation of Texture and Anisotropy during Metal Forming with Respect to Scaling Aspects. 1st Colloquium Process Scaling, Bremen, Germany (2003)
Roters, F.: Crystal plasticity FEM from grain scale plasticity to anisotropic sheet forming behaviour. 13th international Workshop on Computational Modelling of the Mechanical Behaviour of Materials, Magdeburg, Germany (2003)
Raabe, D.; Helming, K.; Roters, F.; Zhao, Z.; Hirsch, J.: A Texture Component Crystal Plasticity Finite Element Method for Scalable Large Strain Anisotropy Simulations. ICOTOM 13, Seoul, South Korea (2002)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.