Schneider, W. B.; Benedikt, U.; Auer, A. A.: Interaction of platinum nanoparticles with graphitic carbon structures: A computational study. ChemPhysChem 14 (13), pp. 2984 - 2989 (2013)
Kettner, M.; Benedikt, U.; Schneider, W.; Auer, A. A.: Computational Study of Pt/Co Core-Shell Nanoparticles: Segregation, Adsorbates and Catalyst Activity. Journal of Physical Chemistry C 116 (29), pp. 15432 - 15438 (2012)
Auer, A. A.; Richter, A.; Berezkin, A. V.; Guseva, D. V.; Spange, S.: Theoretical study of twin polymerization – From chemical reactivity to structure formation. Macromolecular Theory Simulations 21 (9), pp. 615 - 628 (2012)
Benedikt, U.; Auer, A. A.; Espig, M.; Hackbusch, W.: Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2. Journal of Chemical Physics 134 (5), 054118, pp. 1 - 12 (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain, June 26, 2011 - July 01, 2011. (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain (2011)
Challenges for Theory in Electrochemistry. Minisymposium "Challenges for Theory in Electrochemistry", MPI für Eisenforschung GmbH, Düsseldorf, Germany (2010)
Perspectives in Quantum chemistry for Electrochemistry. Minisymposium "Perspectives in Quantum chemistry for Electrochemistry", Center for Electrochemical Sciences, Ruhr-Universität Bochum, Germany (2010)
Benedikt, U.; Schneider, W.; Auer, A. A.: Oxygen Reduction Reaction on Pt-Nanoparticles: A Density-Functional Based Study. 46th Symposium on Theoretical Chemistry, STC2010, Münster, Germany (2010)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.