Isaac, A.; de Souza, D.; Camin, B.; Kottar, A.; Reimers, W.; Buslaps, T.; di Michiel, M.; Pyzalla, A.: In-situ 3D Investigation of Creep Damage. XTOP 2006, 8th Biennial Conference on High Resolution, X-Ray Diffraction and Imaging, Karlsruhe, Baden-Baden, Germany (2006)
Pyzalla, A. R.; Kaminski, H.; Camin, B.; Reimers, W.; Buslaps, T.; di Michiel, M.: In-situ Synchrotron X-ray Studies of Creep Damage in CuZn-Alloys. American Crystallography Association Meeting, Honolulu, USA (2006)
Pyzalla, A. R.: Materialforschung mit Neutronen und Synchrotronstrahlung. Kolloquium des Instituts für Eisenhüttenkunde, RWTH Aachen, Aachen, Germany (2006)
Pyzalla, A. R.: Combined Diffraction and Tomography with white and monochromatic high energy synchrotron radiation. ESRF User Meeting, ESRF Grenoble, France (2006)
Juricic, C.; Pinto, H.; Wrobleweski, T.; Pyzalla, A.: Internal Stresses in Oxid Layers on Iron Polycrystals. User Meeting HASYLAB bei DESY, Hamburg, Germany (2006)
Pyzalla, A. R.: Potential of space-resolved studies on materials with synchrotron radiation: Crystalline texture of dinosaur bones. Department für Geo- und Umweltwissenschaften, LMU München, Germany (2006)
Dumont, M.; Kostka, A.; Sander, M.; Borbély, A.; Pyzalla, A. R.: Comparison of apatite crystallite sizes in sauropod and mammal fossil bones. 6th Bone diagenesis meeting, Poppelsdorfer Schloss, University of Bonn, Bonn, Deutschland (2009)
Brito, P.; Pinto, H.; Spiegel, M.; Klaus, M.; Genzel, C.; Pyzalla, A. R.: Phase composition and internal stress development during the oxidation of iron aluminides. ICRS-8, Denver, CO, USA (2008)
Coelho, R. S.; Kostka, A.; Pinto, H.; dos Santos, J.; Pyzalla, A. R.: Microstructure and residual stresses of high-strength steel to aluminium alloy friction stir welds. ICRS-8, Denver, USA (2008)
Coelho, R. S.; Kostka, A.; dos Santos, J.; Pyzalla, A. R.: Friction stir welding of aluminum alloy to steel. Part I: Mechanical properties. VI-PNAM Symposium, Berlin, Germany (2008)
Coelho, R. S.; Kostka, A.; dos Santos, J.; Pyzalla, A. R.: Friction stir welding of aluminum alloy to steel. Part II: Microstructure. VI-PNAM Symposium, Berlin, Germany (2008)
Coelho, R. S.; Kostka, A.; dos Santos, J.; Pyzalla, A. R.: Friction stir welding of aluminum alloy to steel. Part III: Material flow. VI-PNAM Symposium, Berlin, Germany (2008)
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.