Dubosq, R.; Camacho, A.; Rogowitz, A.; Zhang, S.; Gault, B.: Influence of high-strain deformation on major element mobility in garnet: Nanoscale evidence from atom probe tomography. Journal of Metamorphic Geology 42 (3), pp. 355 - 372 (2024)
Dubosq, R.; Schneider, D.; Alfredo, C.; Gault, B.: Strain hardening induced by crystal plasticity: A new mechanism for brittle failure in garnets. Earth and Planetary Science Letters 617, 118273 (2023)
Dubosq, R.; Woods, E.; Gault, B.; Best, J. P.: Electron microscope loading and in situ nanoindentation of water ice at cryogenic temperatures. PLoS One 18 (2), e0281703 (2023)
Dubosq, R.; Schneider, D.; Zhou, X.; Gault, B.; Langelier, B.; Pleše, P.: Bubbles and atom clusters in rock melts: A chicken and egg problem. Journal of Volcanology and Geothermal Research 428, 107574 (2022)
Dubosq, R.; Rogowitz, A.; Schweinar, K.; Gault, B.; Schneider, D.: A 2D and 3D nanostructural study of naturally deformed pyrite: assessing the links between trace element mobility and defect structures. Contributions to Mineralogy and Petrology 174, 72 (2019)
Rogowitz, A.; Zaefferer, S.; Dubosq, R.: Direct observation of dislocation nucleation in pyrite using combined electron channelling contrast imaging and electron backscatter diffraction. Terra Nova 30 (6), pp. 423 - 430 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.