Hamilton, J.; Gianotti, S.; Fischer, J.; Della Fara, G.; Impergre, A.; De Vecchi, F.; AbuAlia, M.; Fischer, A.; Markovics, A.; Wimmer, M.: Electrophoretic Deposition of Gentamicin Into Titania Nanotubes Prevents Evidence of Infection in a Mouse Model of Periprosthetic Joint Infection. Journal of Orthopaedic Research (2025)
Wittrock, A.; Heermant, S.; Beckmann, C.; Wimmer, M.; Fischer, A.; Aßmann, M.; Debus, J.: Protein-metal interactions due to fretting corrosion at the taper junction of hip implants: An in vitro investigation using Raman spectroscopy. Acta Biomaterialia 189, pp. 621 - 632 (2024)
Fara, G. D.; Markovics, A.; Radice, S.; Hamiton, J. L.; Chiesa, R.; Sturm, A.; Angenendt, K.; Fischer, A.; Wimmer, M. A.: Electrophoretic deposition of gentamicin and chitosan into titanium nanotubes to target periprosthetic joint infection. Journal of Biomedical Materials Research Part B-Applied Biomaterials 111 (9), pp. 1697 - 1704 (2023)
Fischer, A.: Wear and Repassivation Rates of Orthopedic Metal Implants in Simulated Healthy and Inflammatory Synovial Fluids. World Tribology Congress 2022, Lyon, France (2022)
Fischer, A.: Ultra-Mild Fretting Wear – A different angle. University of Leeds, School of Mechanical Engineering, Fretting Focus Group Seminar, Leeds, UK (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.