Betzler, S. B.; Koh, A. L.; Lotsch, B. V.; Sinclair, R.; Scheu, C.: Atomic Resolution Observation of the Oxidation of Niobium Nanowires: Implications for Renewable Energy Applications. ACS Applied Nano Materials 3 (9), pp. 9285 - 9292 (2020)
Gänsler, T.; Frank, A.; Betzler, S. B.; Scheu, C.: Electron microscopy studies of Nb3O7(OH) nanostructured cubes - insights in the growth mechanism. Microscience Microscopy Congress MMC2019, Manchester, UK (2019)
Betzler, S. B.; Scheu, C.: Nb3O7(OH) – a promising candidate for photocatalyst: synthesis, nanostructure and functionality. International Conference on Functional Nanomaterials and Nanodevices, Budapest, Hungary (2017)
Frank, A.; Folger, A.; Betzler, S. B.; Wochnik, A. S.; Wisnet, A.; Scheu, C.: Low-cost synthesis of semiconducting nanostructures used in energy applications. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Frank, A.; Wochnik, A. S.; Betzler, S. B.; Scheu, C.: Copper indium disulfide films synthesized with L-cysteine. Autumn School on Microstructural Characterization and Modelling of Thin-Film Solar Cells, Werder, Potsdam, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.