Kwiatkowski da Silva, A.; Ponge, D.; Inden, G.; Gault, B.; Raabe, D.: Physical Metallurgy of segregation, austenite reversion, carbide precipitation and related phenomena in medium Mn steels. Gordon Research Conference: Physical Metallurgy, Biddeford, ME, USA (2017)
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2024, Imperial College London, UK, 2024-04 - 2024-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2023, Imperial College London, UK, 2023-04 - 2023-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2022, Imperial College London, UK, 2022-04 - 2022-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2021, Imperial College London, UK, 2021-04 - 2021-07
Lee, C.-G.; Nallathambi, V.; Kang, T.; Aota, L. S.; Reichenberger, S.; El-Zoka, A.; Choi, P.-P.; Gault, B.; Kim, S.-H.: Magnetocaloric effect of Fe47.5Ni37.5Mn15 bulk and nanoparticles: A cost-efficient alloy for room temperature magnetic refrigeration. arXiv (2024)
Kim, S.-H.; Yoo, Su, S.-H.; Aota, L. S.; El-Zoka, A.; Kang, P. W.; Lee, Y.; Gault, B.: B dopant evolution in Pd catalysts after H evolution/oxidation reaction in alkaline environment. arXiv (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe…
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…