Rao, Z.; Bajpai, A.; Zhang, H.: Active learning strategies for the design of sustainable alloys. Philosophical Transactions of the Royal Society A 382 (2284), 20230242 (2024)
Rao, Z.; Li, Y.; Zhang, H.; Colnaghi, T.; Marek, A.; Rampp, M.; Gault, B.: Direct recognition of crystal structures via three-dimensional convolutional neural networks with high accuracy and tolerance to random displacements and missing atoms. Scripta Materialia 234, 115542 (2023)
Pyczak, F.; Liang, Z.; Neumeier, S.; Rao, Z.: Stability and Physical Properties of the L12-γ' Phase in the CoNiAlTi-System. Metallurgical and Materials Transactions A 54 (5), pp. 1661 - 1670 (2023)
Zhu, Z.; Ng, F. L.; Seet, H. L.; Lu, W.; Liebscher, C.; Rao, Z.; Raabe, D.; Nai, S. M. L.: Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Materials Today 52, pp. 90 - 101 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…