Gault, B.: Pushing the analytical limits of atom probe tomography via cryo-enabled workflows. Microscience Microscopy Congress 2021, online, Oxford, UK (2021)
Gault, B.; Guillon, O.: Du térawatt au picomètre: Voyage au cœur des technologies de l’hydrogène. Café des Sciences de l’Ambassade de France en Allemagne, online, Berlin, Germany (2021)
Gault, B.: Advancing corrosion understanding with (cryo-) Atom Probe Tomography. Imperial College London - Rolls Royce corrosion seminar, online, London, UK (2021)
Gault, B.: Machine-Learning for Atom Probe Tomography. Workshop 'Research-data management, machine learning and material informatics for Superalloys', online, Bochum, Germany (2021)
Gault, B.: Introduction to atom probe tomography: performance and opportunities in characterizing microstructures. Metallic Microstructures: European Lectures Online (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Atom Probe Tomographic Study of Precursor Metastable Phases and Their Influence on a Precipitation in the Metastable ß-titanium Alloy, Ti–5Al–5Mo–5V–3Cr. TMS 2021 Annual Meeting & Exhibition, online, Pittsburgh, PA, USA (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…