Neugebauer, J.: Automizing work flows in computational materials design. Traceability and securing of results as essential challenges of research in the digital age, Berlin, Germany (2019)
Tehranchi, A.; Hickel, T.; Neugebauer, J.: Atomistic simulations of hydrogen-defect interactions in metals. Workshop "Hydrogen in Metals - current understanding and future needs", St Anne's College, Oxford, UK (2019)
Todorova, M.; Surendralal, S.; Neugebauer, J.: First-principles approach to model electrochemical reactions at the solid-liquid interface. Spring Meeting of the German Physical Society (DPG 2019), Regensburg, Germany (2019)
Ikeda, Y.; Körmann, F.; Neugebauer, J.: Impact of Interstitial Alloying of High Entropy Alloys from First Principles. TMS 2019, San Antonio, TX, USA (2019)
Neugebauer, J.; Todorova, M.; Grabowski, B.; Hickel, T.: Modelling structural materials in realistic environments by ab initio thermodynamics. Hume-Rothery Award Symposium, TMS2019 Annual Meeting and Exhibition, San Antonio, TX, USA (2019)
Hickel, T.; Zendegani, A.; Körmann, F.; Neugebauer, J.: Energetics of non-stoichiometric stacking faults in Fe–Nb alloys: An ab initio study. TMS 2019 Annual Meeting, San Antonio, TX, USA (2019)
Neugebauer, J.; Surendralal, S.; Todorova, M.: Extending First-Principles Calculations to Model Electrochemical Reactions at the Solid-Liquid Interface. Towards Reality in Nanoscale Materials X, Levi, Finnland (2019)
Neugebauer, J.; Janßen, J.; Körmann, F.; Hickel, T.; Grabowski, B.: Exploration of large ab initio data spaces to design materials with superior mechanical properties. Physics and Theoretical Division Colloquium, Los Alamos, NM, USA (2019)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Modelling electrochemical solid/liquid interfaces by first principles calculations. 19th International Workshop on Computational Physics and Material Science: Total Energy and Force Methods, ICTP, Trieste, Italy (2019)
Ikeda, Y.; Körmann, F.; Neugebauer, J.: Impact of chemical compositions and interstitial alloying on the stacking fault energy of CrMnFeCoNi-based HEAs from first principles. The 2nd International Conference on High-Entropy Materials , Jeju, South Korea (2018)
Neugebauer, J.: Exploration of large ab initio data spaces to design structural materials with superior mechanical properties. Multiscale Materials Modeling (MMM 2018) Conference, Osaka, Japan (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…