Scheu, C.; Folger, A.: Annealing treatment in various atmospheres: A tool to control structure and properties of TiO2 nanowires. 6th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM-2019), Chennai, India (2019)
Scheu, C.; Zhang, S.: Effect of interfaces on the photoelectrochemical performance of functional oxides. PICS3 2019 Meeting, Centre Interdisciplinaire de Nanoscience de Marseille, Marseille, France (2019)
Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Electron microscopic investigation of the influence of plasma parameters on VOx films deposited by a plasma ion assisted process. E-MRS 2019 Spring Meeting, Nice, France (2019)
Lim, J.; Hengge, K. A.; Aymerich Armengol, R.; Gänsler, T.; Scheu, C.: Structural Investigation of 2D Nanosheets and their Assembly to 3D Porous Morphologies. 5th International Conference on Electronic Materials and Nanotechnology for Green Environment (ENGE 2018), Jeju, Korea (2018)
Scheu, C.; Hengge, K. A.: Unraveling catalyst growth and degradation mechanisms via STEM. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano 2018, Hamburg, Germany (2018)
Scheu, C.: Nanostructured photocatalyst based on transition metal oxides. Seminar at National University of Singapore, Dept. of Materials Science and Engineering, Singapore, Singapore (2018)
Scheu, C.: Insights in interfaces by combining Cs corrected STEM and APT experiments with atomistic simulations. Seminar at the University of Sydney, Faculty of Engineering & Information Technologies, Sydney, Australia (2018)
Scheu, C.: Unraveling the secrets of interfaces and grain boundaries. Seminar at University of New South Wales, School of Materials Science and Engineering, Sydney, Australia (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.