Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. American Conference on Neutron Scattering (ACNS 2008), Santa Fe, New Mexico, USA (2008)
Stein, F.: Composition dependence of nanohardness and Young's modulus in diffusion couples containing Laves phases. Workshop "The Nature of Laves Phases X", Dresden, Germany (2008)
Stein, F.; Frommeyer, G.; Schneider, S. M.: Processing of eutectic NiAl–Cr and NiAl–Re alloys under microgravity. Meeting "TEMPUS Parabolic Flight September 2007", Bonn, Germany (2008)
Prymak, O.; Stein, F.; Frommeyer, G.; Raabe, D.: Phase equilibria in the Nb–Cr–Al system at 1150, 1300 and 1450 °C. Workshop "The Nature of Laves Phases IX", Stuttgart, Germany (2007)
Prymak, O.; Stein, F.; Palm, M.; Frommeyer, G.; Raabe, D.: Konstitutionsuntersuchungen im System Nb-Cr-Al: Erste Ergebnisse und weitere Planungen. Workshop: The Nature of Laves Phases VII, MPI für Metallforschung Stuttgart, Germany (2006)
Stein, F.; Frommeyer, G.; Schneider, S. M.: Iron-Silicon Alloys with 3.5, 4.5 and 5.5 wt.% Si Processed under Microgravity. TEMPUS Parabolic Airplane Flight 2006 Meeting, DLR Bonn, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.