Yang, J.; Todorova, M.; Neugebauer, J.: Comparative analysis of surface phase diagrams in aqueous environment: Implicit vs explicit solvation models. The Journal of Chemical Physics 160 (16), 164715 (2024)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Laterally Resolved Free Energy Profiles and Vibrational Spectra of Chemisorbed H Atoms on Pt(111). Journal of Chemical Theory and Computation 20 (5), pp. 2192 - 2201 (2024)
Kumar, K. B. S.; Todorova, M.; Neugebauer, J.: Construction and analysis of surface phase diagrams to describe segregation and dissolution behavior of Al and Ca in Mg alloys. Physical Review Materials 7, 095802 (2023)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Impact of Water Coadsorption on the Electrode Potential of H–Pt(1 1 1)-Liquid Water Interfaces. Physical Review Letters 126 (16), 166802 (2021)
Yoo, S.-H.; Siemer, N.; Todorova, M.; Marx, D.; Neugebauer, J.: Deciphering Charge Transfer and Electronic Polarization Effects at Gold Nanocatalysts on Reduced Titania Support. The Journal of Physical Chemistry C 123 (9), pp. 5495 - 5506 (2019)
Surendralal, S.; Todorova, M.; Finnis, M. W.; Neugebauer, J.: First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. Physical Review Letters 120 (24), 246801 (2018)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.