Cautaerts, N.; Rauch, E. F.; Jeong, J.; Dehm, G.; Liebscher, C.: Investigation of the orientation relationship between nano-sized G-phase precipitates and austenite with scanning nano-beam electron diffraction using a pixelated detector. Scripta Materialia 201, 113930 (2021)
Jeong, J.; Jang, W.-S.; Kim, K. H.; Kostka, A.; Gu, G.; Kim, Young, Y.-M.; Oh, S. H.: Crystallographic Orientation Analysis of Nanocrystalline Tungsten Thin Film Using TEM Precession Electron Diffraction and SEM Transmission Kikuchi Diffraction. Microscopy and Microanalysis 27 (2), pp. 237 - 249 (2021)
Kiener, D.; Jeong, J.; Alfreider, M.; Konetschnik, R.; Oh, S. H.: Prospects of using small scale testing to examine different deformation mechanisms in nanoscale single crystals - A case study in Mg. Crystals 11 (1), 61 (2021)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Industrial Technology (KITECH), Seoul, South Korea (2019)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Materials Science (KIMS), Seoul, South Korea (2019)
Jeong, J.: Advanced transmission electron microscopy of nanomaterials using In-situ TEM and precession electron diffraction. Seminar, Korea Institute of Science and Technology (KIST), Seoul, South Korea (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. KSM Annual Fall Conference 2019, Gyeongju, South Korea (2019)
Jeong, J.; Kim, J.; Kiener, D.; Oh, S. H.: In-situ TEM observation of twin-dominated deformation of Mg single crystals. KSM Annual Fall Conference 2019, Gyeongju, South Korea (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. Joint Max-Planck-Institut für Eisenforschung MPIE) / Ernst Ruska-Centre (ER-C) Workshop, Düsseldorf, Germany (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. International Workshop on Advanced In Situ Microscopies
of Functional Nanomaterials and Devices (IAMnano 2019), Düsseldorf, Germany (2019)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...