Posner, R.; Fink, N.; Wolpers, M.; Grundmeier, G.: Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel. Surface and Coatings Technology 228, pp. 286 - 295 (2013)
Stellnberger, K.-H.; Wolpers, M.; Fili, T.; Reinartz, C.; Paul, T.; Stratmann, M.: Electrochemical quartz crystal microbalance in modern corrosion research Study of the pretreatment of galvanized steel. Faraday Discussions 107, pp. 307 - 322 (1997)
Wolpers, M.; Stratmann, M.; Viefhaus, H.; Streckel, H.: The structure and stability of metal surfaces modified by silane Langmuir-Blodgett films. Thin Solid Films 210-211 (Part 2), pp. 592 - 596 (1992)
Stratmann, M.; Wolpers, M.; Lösch, R.; Volmer, M.: The structure and reactivity of chemically modified reactive metal surfaces. Bulletin of Electrochemistry 8, p. 8 - 8 (1992)
Wolpers, M.; Stratmann, M.; Viefhaus, H.: Structure and stability of silane modified metal surfaces. Fresenius' Journal of Analytical Chemistry 341 (5-6), pp. 337 - 338 (1991)
Stratmann, M.; Wolpers, M.; Streckel, H.; Feser, R.: Use of a Scanning-Kelvinprobe in the Investigation of Electrochemical Reactions at the Metal/Polymer Interface. Berichte Bunsengesellschaft Physikalische Chemie 95, 11, pp. 1365 - 1375 (1991)
Wolpers, M.; Viefhaus, H.; Stratmann, M.: Surface Analytical Investigation on Metal Surfaces, Modified by LB Films of Silanes. Applied Surface Science 47, 1, pp. 49 - 62 (1991)
Wolpers, M.; Viefhaus, H.; Stratmann, M.: SEM and SAM Imaging of Silane LB-Films on Metallic Substrates. Applied Surface Science 45, 2, pp. 167 - 170 (1990)
Stratmann, M.; Vogel, D.; Rohwerder, M.; Steinbeck, G.; Ogle, K.; Wolpers, M.; de Boeck, A.; Wormuth, R.; Rehnisch, O.; Reier, T.: Investigations of the delamination of polymer-coated zink and steel surfaces with the scanning Kelvin probe in a climatic cycle test. In: In: Technical Steel Research, EUR 20348 EN, pp. 1 - 198 (Ed. Steel Research). Steel Research, Brussels, Belgium (2002)
Stratmann, M.; Volmer, M.; Wolpers, M.: Stability and Reactivity of Chemically Modified Iron Surfaces. In: European Conference on Advanced Materials and Processes Proc.. European Conference on Advanced Materials and Processes, Aachen, Germany. (1989)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…