Vogel, A.; Swaminathan, S.; Vogel, D.; Rohwerder, M.: Novel Setup for Metal/Gas Reactions at High Temperature. 6th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties, Paris, France (2010)
Vogel, D.; Renner, F. U.; Rohwerder, M.; Stratmann, M.: Novel setups pushing the limits of high-temperature reaction studies. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2010)
Auinger, M.; Rohwerder, M.: Thermodynamic Simulations of Gas-Nitriding in Iron-Chromium and Iron-Silicon Alloys. European Conference “Nitriding and Nitrocarburising”, Aachen, Germany (2010)
Salgin, B.; Rohwerder, M.: Scanning Kelvin Probe (SKP) as a tool for monitoring ion mobility on insulators. M2i Conference 2009, Noordwijkerhout, The Netherlands (2009)
Hamou, R. F.; Erbe, A.; Rohwerder, M.: Screening effects in probing the double layer by scanning electrochemical potential microscopy. Comsol European Conference October 2009, Milan, Italy (2009)
Auinger, M.; Rohwerder, M.: Numerical Simulation of High Temperature Corrosion Processes in Mn, Cr, Si, Al–Steels. Thermodynamics 2009, Imperial College London, U. K. (2009)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation at High Temperatures in Alloyed Steel Samples. Electrochem09 and 50th Corrosion Science Symposium, Manchester, UK (2009)
Senöz, C.; Rohwerder, M.: Application of Atomic Force Microscopy in its Kelvin Probe Mode (SKPFM) over Filiform Corrosion of Aluminum Alloys. Workshop on Scanning Probe Microscopies and Organic Materials XVII, Bremen, Germany (2009)
Senöz, C.; Maljusch, A.; Rohwerder, M.; Schuhmann, W.: Microstructural and Surface Potential Study of Al–4 wt% Cu–Mg (DURAL) Alloy. ICAA 11, 11th International Conference on Aluminium Alloys, Aachen, Germany (2008)
Ankah, G. N.; Renner, F. U.; Rohwerder, M.: Fundamental Investigations of the Corrosion of Binary Alloys. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Borissov, D.; Renner, F. U.; Rohwerder, M.: Zn–Mg–Al alloy electrodeposition from ionic liquids. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Rohwerder, M.: Role of Locallized Protection for the Performance of Conducting Polymer Based Composite Coatings. The 7th International Symposium on Electrochemical Micro and Nanosystem Technologies (EMNT 08), Kibbutz Ein Gedi, Israel (2008)
Hamou, R. F.; Biedermann, P. U.; Rohwerder, M.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Salgin, B.; Rohwerder, M.: Effects of the Semiconducting Properties of Surface Oxide on the Delamination at the Polymer/Metal Interface. 2nd International IMPRS-SurMat Workshop, Bochum, Germany (2008)
Mardare, A. I.; Borodin, S.; Rohwerder, M.; Wieck, A. D.; Hassel, A. W.: Gold nanoparticles growth and their embedding in thin anodic alumina. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…