Borissov, D.; Pareek, A.; Renner, F. U.; Rohwerder, M.: Electrodeposition of Zn and Au–Zn alloys at low temperature in an ionic liquid. Physical Chemistry Chemical Physics 12 (9), pp. 2059 - 2062 (2010)
Borissov, D.; Isik-Uppenkamp, S.; Rohwerder, M.: Fabrication of iron nanowire arrays by electrodeposition into porous alumina. The Journal of Physical Chemistry C 113 (8), pp. 3133 - 3138 (2009)
Borissov, D.; Rohwerder, M.: Fundamental Investigation of the Effect of Oxides on the Reaction Kinetics During Hot Dip Galvanizing. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Van De Putte, T.; Borissov, D.; Loison, D.; Penning, J.; Rohwerder, M.; Claessens, S.: Reduction of SiO2 Surface Oxides by Solute Carbon to Improve the Galvanizability of Si alloyed AHSS. International Conference on New Developments in Advanced High Strength Sheet Steels, Orlando, FL, USA (2007)
Borissov, D.; Renner, F. U.; Rohwerder, M.: Zn–Mg–Al alloy electrodeposition from ionic liquids. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…