Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C–C elastic interactions on the structural stability of dilute Fe–C solid solutions. EUROMAT 2009, Glasgow, UK (2009)
Holec, D.; Friak, M.; Dlouhy, A.; Neugebauer, J.: Ab initio search for the NiTi ground state with shape-memory ability. ESOMAT 2009, Prague, Czech Republic (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Investigation of solid solution strengthening by density functional theory. 11-th National Congress on Theoretical and Applied Mechanics, Borovets, Bulgaria (2009)
Friák, M.; Deges, J.; Krein, R.; Stein, F.; Palm, M.; Frommeyer, G.; Neugebauer, J.: Combining Experimental and Computational Methods in the Development of Fe3Al-based Materials. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C-C elastic interactions on the structural stability of dilute Fe-C solid solutions. Invited Talk at ICAMS, Bochum, Germany (2009)
Friak, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Using Ab Initio Calculations in Designing BCC Mg–Li Alloys for Ultra Light-Weight Applications. THERMEC'2009: International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS, Berlin, Germany (2009)
Friak, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Theory guided design of bcc Mg-Li alloys for ultra-light weight applications. ICSMA 15: International Conference on the Strength of Materials, Dresden, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. 15th International Conference of Strength of Materials, Dresden, Germany (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Fundamental materials-design limits in ultra light-weight Mg-Li alloys determined from ab initio calculations. Seminar in the Department of Low Dimensional Structures and Metastable Phases at the Max Planck Institute for Metals Research, Stuttgart, Germany (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab initio determined materials-design limits in ultra light-weight Mg-Li alloys. Seminar in the Department of Strukture at the Institute of Physics of Materials of the Academy of Sciences of the Czech Republic and Institute of Chemistry of the Faculty of Sciences of Masaryk University, Brno, Czech Republic (2009)
Friák, M.; Sander, B.; Ma, D.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Ab-initio based multi-scale approaches to the elasticity of polycrystals. Seminar at the Department of Physical Metallurgy and Materials Testing at Montan Universität Leoben, Leoben, Austria (2009)
Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: Ab initio calculation of phase boundaries in iron along the bcc-fcc transformation path and magnetism of iron overlayers. Seminar at the Department of Materials Physics at Montan Universität Leoben, Leoben, Austria (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Multi-scale modeling of the phase stability of interstitial Fe-C solid solutions. Invited talk at MPI for Metal Research, Stuttgart, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.