Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab Initio Guided Design of bcc Ternary Mg–Li–X (X=Ca,Al,Si,Zn,Cu) Alloys for Ultra-Lightweight Applications. Advanced Engineering Materials 12 (7), pp. 572 - 576 (2010)
von Pezold, J.; Dick, A.; Friák, M.; Neugebauer, J.: Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al–Ti. Physical Review B 81 (9), pp. 094203-1 - 094203-7 (2010)
Udyansky, A.; von Pezold, J.; Bugaev, N. V.; Friák, M.; Neugebauer, J.: Interplay between long-range elastic and short-range chemical interactions in Fe–C martensite formation. Physical Review B 79 (22), pp. 224112-1 - 224112-5 (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using ab initio calculations in designing bcc Mg-Li alloys for ultra light-weight applications. Acta Materialia 57 (1), pp. 69 - 76 (2009)
Lymperakis, L.; Friák, M.; Neugebauer, J.: Atomistic calculations on interfaces: Bridging the length and time scales. The European Physics Journal Special Topics 177, pp. 41 - 57 (2009)
Ma, D.; Friák, M.; Neugebauer, J.; Raabe, D.; Roters, F.: Multiscale simulation of polycrystal mechanics of textured β-Ti alloys using ab initio and crystal-based finite element methods. Physica Status Solidi B 245 (12), pp. 2642 - 2648 (2008)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Error-propagation in multiscale approaches to the elasticity of polycrystals. Physica Status Solidi (B) 245, pp. 2636 - 2641 (2008)
Counts, W. A.; Friak, M.; Battaile, C. C.; Raabe, D.; Neugebauer, J.: A comparison of polycrystalline elastic constants computed by analytic homogenization schemes and FEM. Physica Status Solidi B 245, pp. 2630 - 2635 (2008)
Sob, M.; Friák, M.; Wang, L. G.; Kuriplach, J.: The role of ab initio electronic structure calculations in contemporary materials science - part 2. Journal of Functional Materials 1 (11), pp. 408 - 418 (2007)
Sob, M.; Friák, M.; Wang, L. G.; Kuriplach, J.: The role of ab initio electronic structure calculations in contemporary materials science - part 1. Journal of Functional Materials 1 (10), pp. 363 - 367 (2007)
Raabe, D.; Sander, B.; Friák, M.; Ma, D.; Neugebauer, J.: Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments. Acta Materialia 55 (13), pp. 4475 - 4487 (2007)
Friák, M.; Raabe, D.; Neugebauer, J.: Ab Initio Guided Design of Materials. In: Structural Materials and Processes in Transportation, pp. 481 - 495 (Eds. Lehmhus, D.; Busse, M.; Herrmann, A. S.; Kayvantash, K.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.