Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo simulations and ab initio studies of nano-precipitation in ferritic steels. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Tillack, N.; Yates, J. R.; Roberts, S. G.; Hickel, T.; Drautz, R.; Neugebauer, J.: First-Principles Investigations of ODS Steels. Ab initio Description of Iron and Steel: Thermodynamics and Kinetics, Tegernsee, Germany (2012)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Psi-k/CECAM/CCP9 Biennial Graduate School in Electronic-Structure Methods, Oxford, UK (2011)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Ruhr-Universität Bochum, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio and kinetic Monte-Carlo study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo and ab initio study of nano-precipitates and growth in ferritic steels. Ab Initio Description of Iron and Steel: Mechanical Properties, Tegernsee, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Combined ab initio studies and kinetic Monte Carlo simulations of nano-precipitation in ferritic steels. Summer School: Computational Materials Science, San Sebastian, Spain (2010)
Tillack, N.: Chemical Trends in the Yttrium-Oxide Precipitates in Oxide Dispersion Strengthened Steels: A First-Principles Investigation. Master, Ruhr-Universität Bochum, Bochum, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.