Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of anodic iron sulfide layer growth in saturated H2S saline solutions. Gordon Research Seminar-Aqueous Corrosion, New London, NH, USA (2014)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Brito, P.; Pinto, H.; Spiegel, M.; Klaus, M.; Genzel, C.; Pyzalla, A. R.: Phase composition and internal stress development during the oxidation of iron aluminides. ICRS-8, Denver, CO, USA (2008)
Liapina, T.; Spiegel, M.; Stein, F.: Short-term oxidation of Fe–Al: Effect of ternary elements and Al content. 4th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Interlaken, Switzerland (2007)
Asteman, H.; Lill, K. A.; Hassel, A. W.; Spiegel, M.: Preparation and electrochemical characterization by SDC of thin Cr2O3, Fe2O3 and (Cr, Fe)2O3 films thermally grown on Pt substrates. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Bernst, R.; Spiegel, M.: Carburisation of Fe–Al alloys at 1000°C in flowing CO-H2-H2O gas mixture. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Park, E.; Spiegel, M.: Oxidation resistance of alloys for flexible tubes in dry air and KCl containing atmospheres. Eurocorr 2005, Lisbon, Portugal (2005)
Asteman, H.; Spiegel, M.: Model oxide films- A novel approach to study the chemical breakdown of native HT-oxide barriers. Gordon Research Conference - High Temperature Corrosion, New London, NH, USA (2005)
Parezanovic, I.; Spiegel, M.: Role of B and Mn segregation on the surface chemistry of Fe–B–Mn - model alloys. Gordon Research Conference - High Temperature Corrosion, New London, NH, USA (2005)
Pöter, B.; Spiegel, M.: Studies on the nucleation and growth of oxide films. Gordon Research Conference – High Temperature Corrosion, New London, NH, USA (2005)
Park, E.; Hüning, B.; Borodin, S.; Rohwerder, M.; Spiegel, M.: Initial oxidation of Fe-Cr alloys: In situ STM amd ex-situ SEM studies. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Cha, S. C.; Spiegel, M.: Local reactions of KCl particles with Fe, Ni and Cr surfaces. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Sánchez Pastén, M.; Strauch, E.; Spiegel, M.: High temperature corrosion of metallic materials in simulated waste incineration conditions at 300-600 °C. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…