Uebel, M.; Tran, T. H.; Altin, A.; Gerlitzky, C.; Erbe, A.; Groche, P.: Which Properties Must a Surface have to be Suitable for Cold Pressure Welding? 22nd International Conference on Material Forming (ESAFORM 2019), Mondragon Unibrtsitatae, Spain (2019)
Rabe, M.; Baumgartner, L.-M.; Boyle, A. L.; Erbe, A.: Designing smart interfaces based on electro-responsive self-assembled monolayers from coiled-coil peptides. Bunsentagung 2019 - 118th General Assembly of the German Bunsen Society for Physical Chemistry, Jena, Germany (2019)
Ebbinghaus, P.; Rabe, M.; Erbe, A.: Time-dependent Water Uptake in s Polymer Model Coating Visualised by FTIR Microscopy Using a Focal Plane Array Detector. Fourier Transform Spectroscopy 2016, Leipzig, Germany (2016)
Mondragon Ochoa, J. S.; Altin, A.; Rohwerder, M.; Erbe, A.: Surface Modification of Iron With Grafted Hydrophobic Acrylic Polymers and Study of Their Delamination Kinetics. Polymers and Organic Chemistry POC16, Hersonissos (Crete), Greece (2016)
Erbe, A.; Schneider, P.; Sarfraz, A.; Iqbal, D.: Neue Ergebnisse zur Bildung und Wirkung klassischer und moderner Vorbehandlungen. Gfkorr Jahrestagung, Frankfurt am Main, Germany (2015)
Iqbal, D.; Erbe, A.: Chemie der kathodischen Delamination – welche Bindung bricht? Sitzung des Gfkorr Arbeitskreises “Korrosionsschutz durch Beschichtungen”, Frankfurt am Main, Germany (2015)
Altin, A.; Wohletz, S.; Krieger, W.; Groche, P.; Erbe, A.: Effect of surface condition on the bond strength between aluminum and steel joint in cold welding. CETAS 2015, Düsseldorf, Germany (2015)
Biedermann, P. U.; Nayak, S.; Erbe, A.: The Mechanism of Electrochemical Oxygen Reduction: A Combined DFT and in-Situ ATR-IR Study on Model Semiconductor Surfaces Ge(100) and ZnO. 227th ECS Meeting, Chicago, IL, USA (2015)
Yang, L.; Tecklenburg, S.; Fang, N.; Erbe, A.; Wippermann, S. M.; Gygi, F.; Galli, G.: A joint first principles and ATR-IR study of the vibrational properties of interfacial water at Si(100):H-H2O solid-liquid interfaces. APS March Meeting 2015 , San Antonio, TX, USA (2015)
Altin, A.; Wohletz, S.; Krieger, W.; Kostka, A.; Groche, P.; Erbe, A.: Nanoscale understanding of bond formation during cold welding of aluminum and steel. 6th International Conference on Tribology in Manufacturing Processes & Joining by Plastic Deformation, Darmstadt, Germany (2014)
Altin, A.; Erbe, A.; Ritter, H.; Rohwerder, M.: Controlled release of inhibitors from composite organic coatings: A “green” way of corrosion protection. EUROCORR 2013, Estoril, Portugal (2013)
Sarfraz, A.; Posner, R.; Lill, K.; Erbe, A.: Zirconium oxide based conversion layers on aluminum alloys: Role of intermetallics. 112th Bunsentagung (Annual German Conference on Physical Chemistry), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.