Krüger, T.: Hybrid LB-FEM modeling of dense suspensions of deformable particles under shear. SFB TR6 Seminar, Institut für Theoretische Physik II, HHU Düsseldorf, Germany (2011)
Krüger, T.: Mesoscopic modeling of red blood cell dynamics. Oberseminar: Theorie komplexer Systeme WS 2010, Institut für Theoretische Physik, Universität Heidelberg, Germany (2010)
Krüger, T.: Mesoscopic Modeling of the dynamics of red blood cells. Seminar talk at Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum, Germany (2010)
Krüger, T.: Analyzing blood properties by simulating suspensions of deformable particles: Shear stress and viscosity behavior. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive broadening in pressure driven microchannels: A lattice Boltzmann study of the scaling laws. The XVth International Congress on Rheology, Monterey, CA. USA (2008)
Varnik, F.; Raabe, D.: Finite size driven droplet evaporation and kinetics of droplets: A lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad-Honnef, Germany (2008)
Varnik, F.: Some micro- and nanofluidic issues using a free energy based lattice Boltzmann approach: Finite size driven droplet evaporation and wetting dynamics on chemical gradients. Seminar at MPI für Metallforschung, Stuttgart, Germany (2008)
Varnik, F.: Stability and kinetics of droplets. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Flows driven by wettability gradients: A lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Varnik, F.: Lattice Boltzmann studies of non-ideal fluids: Droplet coalescence and wetting gradientinduced motion. Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany (2007)
Varnik, F.: Lattice-Boltzmann simulations of multi-phase and multi-component systems. Max-Planck Workshop Multiscale Materials Modelling, Sant Feliu de Guixols, Spain (2007)
Varnik, F.: Discussion meeting on Lattice Boltzmann modeling and simulation of multicomponent and multiphase flows. Seminar Talk at TU-Braunschweig, Braunschweig, Germany (2007)
Varnik, F.: Diffusion, structural relaxation and rheological properties of a simple glass forming model: A molecular dynamics study. The 5th International Workshop on Complex Systems, Sendai, Japan (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…