Fischer, F. D.; Cha, L.; Dehm, G.; Clemens, H. J.: Can local hot spots induce α2/γ lamellae during incomplete massive transformation of γ-TiAl alloys? Intermetallics 18 (5), pp. 972 - 976 (2010)
Fischer , F. D.; Waitz, T.; Scheu, C.; Cha, L.; Dehm, G.: Study of nanometer-scaled lamellar microstructure in a Ti–45Al–7.5Nb alloy – Experiments and modeling. Intermetallics 18 (4), pp. 509 - 517 (2010)
Matoy, K.; Detzel, T.; Müller , M.; Motz, C.; Dehm, G.: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surface and Coatings Technology 204 (6-7), pp. 878 - 881 (2009)
Dehm, G.: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Progress in Materials Science 54 (6), pp. 664 - 688 (2009)
Oh, S. H.; Legros, M.; Kiener, D.; Dehm, G.: In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Materials 8 (2), pp. 95 - 100 (2009)
Kiener, D.; Motz, C.; Dehm, G.; Pippan, R.: Overview on established and novel FIB based miniaturized mechanical testing using in-situ SEM. International Journal of Materials Research 100 (8), pp. 1074 - 1087 (2009)
Yang, B.; Motz, C.; Grosinger, W.; Kammrath, W.; Dehm, G.: Tensile behaviour of micro-sized copper wires studied by a novel fibre tensile module. International Journal of Materials Research 99 (7), pp. 716 - 724 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…