Dutta, B.; Hickel, T.; Entel, P.; Neugebauer, J.: Ab Initio Predicted Impact of Pt on Phase Stabilities in Ni–Mn–Ga Heusler alloys. Journal of Phase Equilibra and Diffusion 35 (6), pp. 695 - 700 (2014)
Race, C.; von Pezold, J.; Neugebauer, J.: Role of the mesoscale in migration kinetics of flat grain boundaries. Physical Review B 89 (21), 214110 (2014)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Ab initio study of H-vacancy interactions in fcc metals: Implications for the formation of superabundant vacancies. Physical Review B 89 (14), 144108 (2014)
Hüter, C.; Nguyen, C.-D.; Spatschek, R. P.; Neugebauer, J.: Scale bridging between atomistic and mesoscale modelling: Applications of amplitude equation descriptions. Modelling and Simulation in Materials Science and Engineering 22 (3), 034001 (2014)
Todorova, M.; Neugebauer, J.: Extending the concept of defect chemistry from semiconductor physics to electrochemistry. Physical Review Applied 1 (1), 014001 (2014)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: An ab initio approach. Physical Review B 89 (8), 085307 (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…