Todorova, M.; Surendralal, S.; Neugebauer, J.: Building an ab-initio potentiostat in a standard DFT code with periodic boundary conditions. ELRC2019 - IPAM reuniuon workshop, Lake Arrowhead, CA, USA (2019)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: A fully ab initio approach to modelling electrochemical solid/liquid interfaces. Chemiekolloquium der Johannes Kepler Universität Linz, Linz, Austria (2019)
Surendralal, S.: Implementation of an ab initio electrochemical potentiostat: Application to Mg corrosion. Symposium "Fundamentals of the electrochemistry of the metal/electrolyte interface", Imperial College, London, UK (2019)
Todorova, M.; Surendralal, S.; Neugebauer, J.: First-principles approach to model electrochemical reactions at the solid-liquid interface. Spring Meeting of the German Physical Society (DPG 2019), Regensburg, Germany (2019)
Neugebauer, J.; Surendralal, S.; Todorova, M.: Extending First-Principles Calculations to Model Electrochemical Reactions at the Solid-Liquid Interface. Towards Reality in Nanoscale Materials X, Levi, Finnland (2019)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Modelling electrochemical solid/liquid interfaces by first principles calculations. 19th International Workshop on Computational Physics and Material Science: Total Energy and Force Methods, ICTP, Trieste, Italy (2019)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Automated calculations for charged point defects in MgO and α-Fe2O3. DPG-Frühjahrstagung 2016, Regensburg, Germany (2016)
Surendralal, S.; Todorova, M.; Finnis, M. W.; Neugebauer, J.: Effect of external electric fields on the Mg(0001)/H2O interface studied by empirical potentials using automated tools. The electrode potential in electrochemistry workshop - A challenge for electronic structure theory calculations, Castle Reisensburg (Ulm), Germany (2017)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Effect of external electric fields on the Mg(0001)/H2O. High electric Fields in Electrochemistry and in Atom Probe Tomography - Workshop, Ringberg Castle, Tegernsee, Germany (2017)
Surendralal, S.; Todorova, M.; Neugebauer, J.: The Mg(0001)/H2O interface studied by empirical potentials and density functional. DPG-Frühjahrstagung 2017, Dresden, Germany (2017)
Surendralal, S.: Development of an ab initio computational potentiostat and its application to the study of Mg corrosion. Dissertation, Ruhr Universität Bochum (2020)
Surendralal, S.; Todorova, M.: Automated Calculations for Charged Point Defects in Magnesium Oxide and Iron Oxides. Master, Ruhr-Universität Bochum, GermanyRuhr-Universität Bochum, Bochum, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.