Ram, F.; Zaefferer, S.; Jäpel, T.: Error Analysis of the Crystal Orientations and Misorientations obtained by the Classical Electron Backscatter Diffraction Method. RMS EBSD 2014, London, UK (2014)
Ram, F.; Zaefferer, S.; Jäpel, T.: On the accuracy and precision of orientations obtained by the conventional automated EBSD method. RMS EBSD 2014, London, UK (2014)
Ram, F.; Zaefferer, S.: Kikuchi Bandlet Method: A Method to Resolve the Source Point Position of an EBSD Pattern. 15th European Microscopy Congress (EMC), Manchester, UK (2012)
Ram, F.; Zaefferer, S.: 3D-observations and modeling of nucleation during recrystallisation in a heavily deformed Fe-Ni alloy. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Ram, F.: The Kikuchi bandlet method for the intensity analysis of the Electron Backscatter Kikuchi Diffraction Patterns. Dissertation, RWTH Aachen, Aachen, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Deviations from the ideal, stoichiometric composition of tcp (tetrahedrally close-packed) intermetallic phases as, e.g., Laves phases can be partially compensated by point defects like antisite atoms or vacancies, but also planar defects may offer an opportunity to accommodate excess atoms.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.