Huang, L.; Grabowski, B.; McEniry, E.; Trinkle, D. R.; Neugebauer, J.: Importance of coordination number and bond length in titanium revealed by electronic structure investigations. Physica Status Solidi B 252 (9), pp. 1907 - 1924 (2015)
Huang, L.; Cao, T.; Gong, P.; Zeng, Z.: Isotope effects on the vibrational, Invar, and Elinvar properties of pristine and hydrogenated graphene. Solid State Communications 190, pp. 5 - 9 (2014)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.