Herbig, M.: Joint Nanoscale Structural and Chemical Characterization by Correlative Atom Probe Tomography and Transmission Electron Microscopy. Joint Workshop on Nano-Characterisation (4TU.HTM / M2i), Utrecht, The Netherlands (2019)
Herbig, M.: Atomare Einsichten in Struktur und Zusammensetzung von Stählen durch korrelative Elektronenmikroskopie / Atomsondentomographie. 25. Werkstoffkolloquium des Technischen Beirats, Hannover, Germany (2017)
Herbig, M.; Parra, C.D.; Lu, W.; Toji, Y.; Liebscher, C.; Li, Y.; Goto, S.; Dehm, G.; Raabe, D.: Where does the carbon atom go in steel? – Insights gained by correlative transmission electron microscopy and atom probe tomography. International Symposium on Steel Science 2017, Kyoto, Japan (2017)
Herbig, M.: Spatially correlated electron microscopy and atom probe tomography. Klausurtagung des Erlanger Lehrstuhls für Werkstoffwissenschaften WW1, Erlangen, Germany (2017)
Herbig, M.; King, A.; Reischig, P.; Proudhon, H.; Lauridsen, E. M.; Marrow, T. J.; Buffière, J.-Y.; Ludwig, W.: 3D time-resolved crystallographic insights into the growth of short fatigue cracks in beta-titanium. Haël Mughrabi Honorary Symposium & 28th Colloquium on Fatigue Mechanisms on the occasion of the 80th birthday of Haël Mughrabi, Institute I, Materials Science and Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…