Herbig, M.; Li, Y.; Choi, P.: Atomic Analysis of Concentration Changes at Interfaces by Atom Probe Tomography. SFB 761 Doktorandenseminar, RWTH Aachen, Germany (2011)
Kühbach, M.; Breen, A. J.; Herbig, M.; Gault, B.; Raabe, D.: Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Pillar Orientations Using TAPSim. APT&M 2018 International Conference on Atom-Probe Tomography & Microscopy, Washington, DC, USA (2018)
Herbig, M.; Choi, P.; Raabe, D.: A Sample Holder System that Enables Sophisticated TEM Analysis of APT Tips. International Field Emission Symposium 2012, Tuscaloosa, AL, USA (2012)
Herbig, M.: Hüftimplantate: Ein werkstoffwissenschaftlicher Blick auf Geschichte, Möglichkeiten und Limitationen. Habilitation, RWTH Aachen University (2021)
Parra Moran, C.: Atomic scale analysis of grain boundary segregation in pearlitic steel. Master, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…