Marx, V. M.; Cordill, M. J.; Kirchlechner, C.; Dehm, G.: In-situ stress measurements in thin films using synchrotron diffraction. Summer School: Theory and Practice of Modern Powder Diffraction, Tagungshaus Schönenberg, Ellwangen, Ellwangen, Germany (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Design and development of fracture property measurement techniques at the small scale. ICAMS (RUB), Bochum, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Berger, J.; Cordill, M. J.; Dehm, G.: In-situ stress measurements in Cu films using synchrotron radiation. "Mechanical Issues for Flexible Electronics" Flex Workshop, Erich Schmid Institut, Leoben, Leoben, Austria (2014)
Dehm, G.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. Schöntal Symposium - Dislocation-based Plasticity, Kloster Schöntal, Germany (2014)
Dehm, G.; Imrich, P. J.; Wimmer, A. C.; Kirchlechner, C.: From idealized bi-crystals towards applied polycrystals: Plastic deformation in small dimensions. TMS2014, 143rd Annual Meeting & Exhibition, San Diego, CA, USA (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Clamped beam geometry for fracture toughness testing of (Pt,Ni)Al bond coats at the micron-scale. AK- Rasterkraftmikroskopie und Nanomechanische Methoden, Düsseldorf, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Effects of the film thickness on the deformation behavior of thin Cu films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Film thickness effects on the deformation behavior of Cu/Cr thin films on polyimide. TMS 2014: 143rd Annual Meeting & Exhibition, San Diego, CA, USA (2014)
Dehm, G.: Shedding light on the role of interfaces for strengthening materials by using micromechanical testing. 60. Metallkunde-Jubiläumskolloquium, Lech am Arlberg, Germany (2014)
Dehm, G.: Cu–Cr nanocomposites and multilayers. Gordon Research Conference: Thin Film & Small Scale Mechanical Behavior, Bentley University, Boston, MA, USA (2014)
Dehm, G.: Localized mechanical study of individual interfaces in miniaturized Cu structures. MS&T14 - Materials Science & Technology 2014, Pittsburgh, PA, USA (2014)
Imrich, P. J.; Kirchlechner, C.; Motz, C.; Jeon, J. B.; Dehm, G.: In Situ Electron Microscopy and Micro-Laue Study of Plasticity in Miniaturized Cu Bicrystals. CAMTEC III, Symposium on Fine-Scale Mechanical Characterisation and Behaviour , Cambridge, UK (2014)
Kirchlechner, C.; Imrich, P. J.; Motz, C.; Dehm, G.: Plastic deformation of bi-crystalline micro pillars analyzed by in situ µLaue diffraction. TMS2014, Annual Meeting & Exhibition, San Diego, CA, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…