Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2015/2016, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2015 - March 31, 2016
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2014/2015, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2014 - March 31, 2015
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2013/2014, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2013 - March 31, 2014
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2012/2013, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2012 - March 31, 2013
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Blockveranstaltung, Ruhr-Universität Bochum, Germany, March 21, 2011 - March 25, 2011
Hickel, T.: Introduction to Quantum Mechanics in Solid-State Physics. Lecture: Masterstudiengang „Materials Science and Simulation“, WS 2011/2012, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2011 - March 31, 2012
Neugebauer, J.; Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Hands-on-Tutorial, Ruhr-Universität Bochum, Bochum, Germany, September 20, 2010 - September 24, 2010
Neugebauer, J.; Hickel, T.: Computerpraktikum: Moderne Computersimulationsmethoden in der Festkörperphysik. Lecture: Blockpraktikum, MPIE, Düsseldorf, Germany, September 20, 2010 - September 24, 2010
Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Lectures and Exercises, Ruhr-Universität, Bochum, Germany, October 12, 2009 - February 05, 2010
Gomoll, T.: Ab initio Berechnung von Phononenspektren in Systemen mit reduzierter Symmetrie. Diploma, Technische Fachhochschule Berlin, Berlin, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.