von Pezold, J.; Udyansky, A.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-Induced Metal-Hydrogen Interactions across the First Transition Series – An Ab Initio Study of Hydrogen Embrittlement. TMS 2011 Meeting, San Diego, CA, USA (2011)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Grain Boundary Kinetics in Molecular Dynamics: The Effect of the Driving Force on Mobility and Migration Mechanisms. TMS 2011, San Diego, CA, USA (2011)
von Pezold, J.: Understanding embrittlement in metals: A multiscale study of the Hydrogen enhanced local plasticity (HELP) mechanism. Bereichsseminar Materialforschung, MPI für Plasmaforschung, Garching, Germany (2011)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. ADIS 2010, Mechanical Properties, Ringberg, Germany (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Atomistic study of martensite stability in dilute Fe-based solid solutions. PTM 2010 (Solid-Solid Phase Transformations in Inorganic Materials), Avignon, France (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Impurity ordering in iron: An ab initio based multi-scale approach. GraCoS Workshop (Carbon and Nitrogen in Steels: Measurement, Phase Transformations and Mechanical Properties), Rouen, France (2010)
von Pezold, J.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the 1st transition series: An ab initio study of hydrogen embrittlement. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
von Pezold, J.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the 1st transition series: An ab initio study of hydrogen embrittlement. APS March Meeting 2010, Portland, OR, USA (2010)
Udyansky, A.; von Pezold, J.; Neugebauer, J.: Multi-scale modeling of martensite formation in Fe-based solid solutions. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Embrittlement in metals: An atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Computational study of interstitial ordering in bcc iron. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
von Pezold, J.; Aydin, U.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the first transition series - An ab initio study of hydrogen embrittlement. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Understanding embrittlement in metals: A multiscale study of the Hydrogen-enhanced local plasticity mechanism. Materials Research Society (MRS) Fall meeting, Boston, MA, USA (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C–C elastic interactions on the structural stability of dilute Fe–C solid solutions. EUROMAT 2009, Glasgow, UK (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.