Rohwerder, M.; Duc, L.; Michalik, A.: In situ investigation of corrosion localised at the buried interface between metal and conducting polymer based composite coatings. Electrochimica Acta 54 (25), pp. 6075 - 6081 (2009)
Rohwerder, M.; Michalik, A.: Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochimica Acta 53 (3 SPEC. ISS.), pp. 1301 - 1314 (2007)
Michalik, A.; Rohwerder, M.: Long-range ion transport properties of conducting-polymers. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Michalik, A.; Paliwoda-Porebska, G.; Rohwerder, M.: Mechanism of corrosion protection by conducting polymers. 57th Annual Meeting of the International Society of Electrochemistry, Edinburgh, UK (2006)
Paliwoda-Porebska, G.; Michalik, A.; Rohwerder, M.: Conducting polymer coatings for corrosion protection: Pros and cons. Gordon Research Conference on Aqueous Corrosion, New London, NH, USA (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.