Duarte, M. J.; Fang, X.; Rao, J.; Krieger, W.; Brinckmann, S.; Dehm, G.: In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science 56 (14), pp. 8732 - 8744 (2021)
Luo, W.; Kirchlechner, C.; Fang, X.; Brinckmann, S.; Dehm, G.; Stein, F.: Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests. Materials and Design 145, pp. 116 - 121 (2018)
Li, Y.; Fang, X.; Zhang, S.; Feng, X.: Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation. Corrosion Science 135, pp. 192 - 196 (2018)
Yue, M.; Dong, X.; Fang, X.; Feng, X.: Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. Journal of Applied Physics 123 (15), 155301 (2018)
Fang, X.; Dong, X.; Jiang, D.; Feng, X.: Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks. Oxidation of Metals 89 (3-4), pp. 331 - 338 (2018)
Lu, S.-Y.; Chen, Y.; Fang, X.; Feng, X.: Hydrogen peroxide sensor based on electrodeposited Prussian blue film. Journal of Applied Electrochemistry 47 (11), pp. 1261 - 1271 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…